Перевод: со всех языков на все языки

со всех языков на все языки

the Great Exhibition

  • 1 the great exhibition

    نخستين‌ نمايش‌ بزرگ‌ كالاكه‌ درسال‌ 1581 درلندن‌ داد

    English to Farsi dictionary > the great exhibition

  • 2 great

    great [greɪt] (compar greater, superl greatest)
    (a) (in size, scale) grand;
    the great fire of London le grand incendie de Londres (qui, en 1666, détruisit les trois quarts de la ville, et notamment la cathédrale Saint-Paul);
    he made a great effort to be nice il a fait un gros effort pour être agréable
    (b) (in degree) grand;
    a great friend un grand ami;
    they're great friends ce sont de grands amis;
    great ignorance une grande ignorance, une ignorance complète;
    there's great ignorance about the problem les gens ne sont pas conscients du problème;
    great willpower une volonté de fer;
    she's got great willpower elle est très volontaire;
    to my great satisfaction à ma grande satisfaction;
    a great surprise une grande surprise;
    with great care avec grand soin, avec beaucoup de soin;
    with great pleasure avec grand plaisir;
    it is no great matter ce n'est pas une grosse affaire;
    to be in great pain souffrir (beaucoup);
    to reach a great age parvenir à un âge avancé;
    to have a great opinion of sb/sth avoir une haute opinion de qn/qch;
    I have a great liking for that country j'aime beaucoup ce pays
    a great quantity of une grande quantité de;
    a great number of un grand nombre de;
    a great crowd une grande ou grosse foule, une foule nombreuse;
    to a great extent, in great part en grande partie;
    the great majority la grande majorité
    (d) (important → person, event) grand;
    a great man un grand homme;
    Alfred the Great Alfred le Grand;
    a great poet un grand poète;
    a great lady une grande dame;
    a great moment un grand moment;
    a great occasion une grande occasion;
    a great house une grande demeure
    the great hall la grande salle, la salle principale;
    France's greatest footballer le plus grand footballeur français
    (f) familiar (term of approval) génial, super;
    she has a great voice elle a une voix magnifique ;
    he's a great guy c'est un type super ou génial;
    she's great! (nice person) elle est super!;
    to have a great time bien s'amuser ;
    we had a great holiday nous avons passé des vacances merveilleuses ;
    what's that film like? - great! comment est ce film? - génial!;
    it would be great to have lots of money ce serait super d'avoir beaucoup d'argent;
    the great thing is that… le grand avantage ou ce qui est bien, c'est que… ;
    I feel great! je me sens super bien!;
    you look great tonight! (in appearance) tu es magnifique ce soir!;
    ironic he's coming too - oh, great! il vient aussi - oh, génial ou super!
    she's a great reader elle adore lire, elle lit beaucoup;
    she's a great one for television elle adore la télévision;
    ironic she's a great one for borrowing things without asking people elle est spécialiste pour emprunter les choses sans demander l'autorisation
    he's great at languages il est très doué pour les langues ;
    she's great on sculpture elle s'y connaît vraiment en sculpture ;
    she's great at making the past come alive elle arrive merveilleusement bien à faire revivre le passé
    the great apes les grands singes mpl
    2 noun
    (person) he's one of the greats of world cinema c'est l'un des grands noms du cinéma mondial;
    it's one of the all-time greats c'est un des plus grands classiques;
    she's one of the all-time greats c'est une des plus grandes stars;
    the great and the good (people) les gens mpl influents
    (as intensifier) a great big fish un énorme poisson;
    an enormous great house une maison immense;
    familiar you great fat slob! espèce de gros lard!
    University = examen final d'un diplôme de langues classiques et de philosophie à l'université d'Oxford
    ►► Ornithology great auk grand pingouin m;
    Great Australian Bight Grande Baie f Australienne;
    the Great Barrier Reef la Grande Barrière;
    the Great Basin le Grand Bassin;
    Astronomy the Great Bear la Grande Ourse;
    Great Bear Lake le Grand Lac de l'Ours;
    Ornithology great black-backed gull goéland m marin;
    Great Britain Grande-Bretagne f;
    in Great Britain en Grande-Bretagne;
    Ornithology great bustard outarde f barbue;
    great circle grand cercle m;
    Ornithology great cormorant grand cormoran m;
    Ornithology great crested glebe grèbe m huppé;
    Great Dane danois m;
    the Great Depression la grande dépression des années 30;
    the Great Divide = chaîne de montagnes dans le nord des États-Unis marquant la ligne de partage des eaux entre l'Atlantique et le Pacifique;
    the Great Exhibition = grande exposition sur les progrès de la technique et de l'industrie pour laquelle fut construit, en 1851, le Crystal Palace de Hyde Park;
    History the Great Famine la Grande Famine (en Irlande, de 1845 à 1849);
    Great Glen Great Glen m, Glen m More (grande ligne de faille parcourant l'Écosse du nord-est au sud-ouest);
    Ornithology great grey shrike pie-grièche f grise;
    History the Great Hunger la Grande Famine (en Irlande, de 1845 à 1849);
    the Great Lakes les Grands Lacs mpl;
    the Great Lake State = surnom donné au Michigan;
    History the Great Leap Forward le Grand Bond en avant;
    Ornithology great northern diver plongeon m imbrin;
    great organ grand orgue m; (in church) grandes orgues fpl;
    the Great Plains les Grandes Plaines fpl;
    Great Power grande puissance f;
    the Great Powers les grandes puissances fpl;
    Ornithology great reed warbler rousserolle f turdoïde;
    Geography the Great Rift Valley la Rift Valley, la Great Rift Valley;
    American great room séjour m cathédrale, French Canadian salle f de séjour à toit cathédral;
    the Great Salt Lake le Grand Lac Salé;
    great seal Grand Sceau m;
    Ornithology great skua labbe m cataracte, grand labbe m;
    the Great Slave Lake le Grand Lac des Esclaves;
    the Great Smoky Mountains les Smoky Mountains fpl;
    Ornithology great snipe bécassine f double;
    Ornithology great spotted cuckoo coucou-geai m;
    Ornithology great spotted woodpecker (pic m) épeiche f;
    Ornithology great tit mésange f charbonnière, charbonnier m;
    the Great Wall of China la Grande Muraille (de Chine);
    the Great War la Grande Guerre, la guerre de 14 ou de 14-18;
    American familiar the Great White Way Broadway ;
    Zoology great white shark grand requin m blanc
    ✾ Book 'Great Expectations' Dickens 'Les Grandes Espérances'
    ✾ Book ✾ Film 'The Great Gatsby' Fitzgerald, Clayton 'Gatsby le Magnifique'
    ✾ Film 'The Great Escape' Sturges 'La Grande Évasion'
    THE GREAT FAMINE La famine qui sévit en Irlande en 1845 (époque à laquelle ce pays faisait encore partie de l'Empire britannique), fut provoquée par la maladie de la pomme de terre, aliment de base de la population paysanne. Appelée également "the Great Hunger", cette catastrophe plongea le pays dans la misère: elle fit un million de morts et contraignit plus d'un million de personnes à émigrer aux États-Unis et au Canada.

    Un panorama unique de l'anglais et du français > great

  • 3 ♦ exhibition

    ♦ exhibition /ɛksɪˈbɪʃn/
    n. [uc]
    1 esposizione; mostra: an art exhibition, un'esposizione d'arte; the Great Exhibition, la Grande Esposizione ( a Londra, nel 1851); on exhibition, in mostra; in esposizione; esposto; exhibition hall, salone d'esposizione NOTA D'USO: - esposizione-
    2 dimostrazione: an exhibition of one's skill, una dimostrazione della propria abilità
    3 esibizione; ostentazione; mostra: a chilling exhibition of unconcern, una raggelante esibizione di indifferenza
    5 (leg.) produzione, esibizione ( di documenti)
    to make an exhibition of oneself, dare spettacolo; rendersi ridicolo.

    English-Italian dictionary > ♦ exhibition

  • 4 Paxton, Sir Joseph

    [br]
    b. 3 August 1801 Milton Bryant, Bedfordshire, England
    d. 8 June 1865 Sydenham, London, England
    [br]
    English designer of the Crystal Palace, the first large-scale prefabricated ferrovitreous structure.
    [br]
    The son of a farmer, he had worked in gardens since boyhood and at the age of 21 was employed as Undergardener at the Horticultural Society Gardens in Chiswick, from where he went on to become Head Gardener for the Duke of Devonshire at Chatsworth. It was there that he developed his methods of glasshouse construction, culminating in the Great Conservatory of 1836–40, an immense structure some 277 ft (84.4 m) long, 123 ft (37.5 m) wide and 67 ft (20.4 m) high. Its framework was of iron and its roof of glass, with wood to contain the glass panels; it is now demolished. Paxton went on to landscape garden design, fountain and waterway engineering, the laying out of the model village of Edensor, and to play a part in railway and country house projects.
    The structure that made Paxton a household name was erected in Hyde Park, London, to house the Great Exhibition of 1851 and was aptly dubbed, by Punch, the Crystal Palace. The idea of holding an international exhibition for industry had been mooted in 1849 and was backed by Prince Albert and Henry Cole. The money for this was to be raised by public subscription and 245 designs were entered into a competition held in 1850; however, most of the concepts, received from many notable architects and engineers, were very costly and unsuitable, and none were accepted. That same year, Paxton published his scheme in the Illustrated London News and it was approved after it received over-whelming public support.
    Paxton's Crystal Palace, designed and erected in association with the engineers Fox and Henderson, was a prefabricated glasshouse of vast dimensions: it was 1,848 ft (563.3 m) long, 408 ft (124.4 m) wide and over 100 ft (30.5 m) high. It contained 3,300 iron columns, 2,150 girders. 24 miles (39 km) of guttering, 600,000 ft3 (17,000 m3) of timber and 900,000 ft2 (84,000 m) of sheet glass made by Chance Bros, of Birmingham. One of the chief reasons why it was accepted by the Royal Commission Committee was that it fulfilled the competition proviso that it should be capable of being erected quickly and subsequently dismantled and re-erected elsewhere. The Crystal Palace was to be erected at a cost of £79,800, much less than the other designs. Building began on 30 July 1850, with a labour force of some 2,000, and was completed on 31 March 1851. It was a landmark in construction at the time, for its size, speed of construction and its non-eclectic design, and, most of all, as the first great prefabricated building: parts were standardized and made in quantity, and were assembled on site. The exhibition was opened by Queen Victoria on 1 May 1851 and had received six million visitors when it closed on 11 October. The building was dismantled in 1852 and reassembled, with variations in design, at Sydenham in south London, where it remained until its spectacular conflagration in 1936.
    [br]
    Principal Honours and Distinctions
    Knighted 1851. MP for Coventry 1854–65. Fellow Linnaean Society 1853; Horticultural Society 1826. Order of St Vladimir, Russia, 1844.
    Further Reading
    P.Beaver, 1986, The Crystal Palace: A Portrait of Victorian Enterprise, Phillimore. George F.Chadwick, 1961, Works of Sir Joseph Paxton 1803–1865, Architectural Press.
    DY

    Biographical history of technology > Paxton, Sir Joseph

  • 5 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 6 Baxter, George

    SUBJECT AREA: Paper and printing
    [br]
    b. 31 July 1804 Lewes, Sussex, England
    d. 11 January 1867 Sydenham, London, England
    [br]
    English pioneer in colour printing.
    [br]
    The son of a printer, Baxter was apprenticed to a wood engraver and there began his search for improved methods of making coloured prints, hitherto the perquisite of the rich, in order to bring them within reach of a wider public. After marriage to the daughter of Robert Harrild, founder of the printing firm of Harrild \& Co., he set up house in London, where he continued his experiments on colour while maintaining the run-of-the-mill work that kept the family.
    The nineteenth century saw a tremendous advance in methods of printing pictures, produced as separate prints or as book illustrations. For the first three decades colour was supplied by hand, but from the 1830s attempts were made to print in colour, using a separate plate for each one. Coloured prints were produced by chromolithography and relief printing on a small scale. Prints were first made with the latter method on a commercial scale by Baxter with a process that he patented in 1835. He generally used a key plate that was engraved, aquatinted or lithographed; the colours were then printed separately from wood or metal blocks. Baxter was a skilful printer and his work reached a high standard. An early example is the frontispiece to Robert Mudie's Summer (1837). In 1849 he began licensing his patent to other printers, and after the Great Exhibition of 1851 colour relief printing came into its own. Of the plethora of illustrated literature that appeared then, Baxter's Gems of the Great Exhibition was one of the most widely circulated souvenirs of the event.
    Baxter remained an active printer through the 1850s, but increasing competition from the German coloured lithographic process undermined his business and in 1860 he gave up the unequal struggle. In May of that year, all his oil pictures, engravings and blocks went up for auction, some 3,000 lots altogether. Baxter retired to Sydenham, then a country place, making occasional visits to London until injuries sustained in a mishap while he was ascending a London omnibus led to his death. Above all, he helped to initiate the change from the black and white world of pre-Victorian literature to the riotously colourful world of today.
    [br]
    Further Reading
    C.T.Courtney Lewis, 1908, George Baxter, the Picture Printer, London: Sampson Lowe, Marsden (the classic account).
    M.E.Mitzmann, 1978, George Baxter and the Baxter Prints, Newton Abbot: David \& Charles.
    LRD

    Biographical history of technology > Baxter, George

  • 7 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

  • 8 Poncelet, Jean Victor

    [br]
    b. 1 July 1788 Metz, France
    d. 22 December 1867 Paris, France
    [br]
    French mathematician and military and hydraulic engineer.
    [br]
    Poncelet studied mathematics at the Ecole Polytechnique in Paris from 1807 to 1810. He joined the Army, gaining admission to the Corps of Engineers. He worked on the fortifications on the Isle of Walcheren in Holland, and in 1812 he found himself on the Russian front, engulfed in the disastrous defeat of the French at Krasnoi. Poncelet was left for dead on the field, but he was found by the Russians and taken to Saratov, where he was imprisoned for two years. He had ample opportunity there to ponder mathematical problems, a mental process from which stemmed his pioneering advances in projective geometry.
    After his release he returned to this native city of Metz, where he undertook routine military engineering and teaching tasks. These left him time to pursue his mathematical studies in projective geometry. This bore fruit in a series of publications, most notably the first volume of his Traité des propriétés projectives des figures (1822, Paris), the first book to be devoted to the new discipline of projective geometry. With his election to the Académie des Sciences in 1834, Poncelet moved to Paris and devoted much of his time to developing courses in applied mechanics in the Faculty of Science, resulting in a number of books, especially the Introduction à la mécanique industrielle, physique ou expérimentale (1841, Paris: Metz). In 1848 he had attained the rank of general and was made Commandant of the Ecole Polytechnique, a post he held for two years. After his retirement in 1850 he was deeply involved in the industrial machines and tools division at both the Great Exhibition in London in 1851 and the similar exhibition in Paris in 1855.
    Most of Poncelet's work in applied mechanics and technology was conceived during the period 1825–40. His technological innovations were centred on hydraulic engineering, and in 1826 he invented an inward-flow turbine. At the same time he directed his attention to the vertical undershot water-wheel, with wooden blades set radially and substituted curved metal blades: he used tight-fitting masonry and floors in the wheel pits so that all the water would be swept into the spaces between the blades. In addition, he ensured that the water flowing from the blades fell clear of the wheel and did not run in tail water. This greatly improved the efficiency of the water-wheel.
    [br]
    Bibliography
    H.Tribout, 1936, Un Grand Savant: le général Jean-Victor Poncelet, Paris, pp. 204–20 (the most complete list of his published works).
    Further Reading
    I.Didion, 1870, "Notice sur la vie et les ouvrages du général J.-V.Poncelet", Mémoires de l'Académie de Metz 50:101–59.
    M.Daumas (ed), 1968, Histoire des techniques, Vol. 3, Paris (briefly describes his technological work).
    LRD

    Biographical history of technology > Poncelet, Jean Victor

  • 9 Cubitt, William

    [br]
    b. 1785 Dilham, Norfolk, England
    d. 13 October 1861 Clapham Common, Surrey, England
    [br]
    English civil engineer and contractor.
    [br]
    The son of a miller, he received a rudimentary education in the village school. At an early age he was helping his father in the mill, and in 1800 he was apprenticed to a cabinet maker. After four years he returned to work with his father, but, preferring to leave the parental home, he not long afterwards joined a firm of agricultural-machinery makers in Swanton in Norfolk. There he acquired a reputation for making accurate patterns for the iron caster and demonstrated a talent for mechanical invention, patenting a self-regulating windmill sail in 1807. He then set up on his own as a millwright, but he found he could better himself by joining the engineering works of Ransomes of Ipswich in 1812. He was soon appointed their Chief Engineer, and after nine years he became a partner in the firm until he moved to London in 1826. Around 1818 he invented the treadmill, with the aim of putting prisoners to useful work in grinding corn and other applications. It was rapidly adopted by the principal prisons, more as a means of punishment than an instrument of useful work.
    From 1814 Cubitt had been gaining experience in civil engineering, and upon his removal to London his career in this field began to take off. He was engaged on many canal-building projects, including the Oxford and Liverpool Junction canals. He accomplished some notable dock works, such as the Bute docks at Cardiff, the Middlesborough docks and the coal drops on the river Tees. He improved navigation on the river Severn and compiled valuable reports on a number of other leading rivers.
    The railway construction boom of the 1840s provided him with fresh opportunities. He engineered the South Eastern Railway (SER) with its daringly constructed line below the cliffs between Folkestone and Dover; the railway was completed in 1843, using massive charges of explosive to blast a way through the cliffs. Cubitt was Consulting Engineer to the Great Northern Railway and tried, with less than his usual success, to get the atmospheric system to work on the Croydon Railway.
    When the SER began a steamer service between Folkestone and Boulogne, Cubitt was engaged to improve the port facilities there and went on to act as Consulting Engineer to the Boulogne and Amiens Railway. Other commissions on the European continent included surveying the line between Paris and Lyons, advising the Hanoverian government on the harbour and docks at Hamburg and directing the water-supply works for Berlin.
    Cubitt was actively involved in the erection of the Crystal Palace for the Great Exhibition of 1851; in recognition of this work Queen Victoria knighted him at Windsor Castle on 23 December 1851.
    Cubitt's son Joseph (1811–72) was also a notable civil engineer, with many railway and harbour works to his credit.
    [br]
    Principal Honours and Distinctions
    Knighted 1851. FRS 1830. President, Institution of Civil Engineers 1850 and 1851.
    Further Reading
    LRD

    Biographical history of technology > Cubitt, William

  • 10 Mercer, John

    SUBJECT AREA: Textiles
    [br]
    b. 21 February 1791 Great Harwood, Lancashire, England
    d. 30 November 1866 Oakenshaw, Lancashire, England
    [br]
    English pioneer in textile chemistry.
    [br]
    Mercer began work at the age of 9 as a bobbinwinder and then a hand-loom weaver. He had no formal education in chemistry but taught himself and revealed remarkable ability in both theoretical and applied aspects of the subject. He became the acknowledged "father of textile chemistry" and the Royal Society elected him Fellow in 1850. His name is remembered in connection with the lustrous "mercerized" cotton which, although not developed commercially until 1890, arose from his discovery, c. 1844, of the effect of caustic soda on cotton linters. He also discovered that cotton could be dissolved in a solution of copper oxide in ammonia, a phenomenon later exploited in the manufacture of artificial silk. As a youth, Mercer experimented at home with dyeing processes and soon acquired sufficient skill to set up as an independent dyer. Most of his working life was, however, spent with the calico-printing firm of Oakenshaw Print Works in which he eventually became a partner, and it was there that most of his experimental work was done. The association was a very appropriate one, for it was a member of this firm's staff who first recognized Mercer's potential talent and took the trouble in his spare time to teach him reading, writing and arithmetic. Mercer developed manganese-bronze colours and researched into catalysis and the ferrocyanides. Among his innovations was the chlorination of wool in order to make it print as easily as cotton. It was many years later that it was realized that this treatment also conferred valuable shrink-resisting qualities. Becoming interested in photochemistry, he devised processes for photographic printing on fabric. Queen Victoria was presented with a handkerchief printed in this way when she visited the Great Exhibition of 1851, of which Mercer was a juror. A photograph of Mercer himself on cloth is preserved in the Museum of Science and Industry in Manchester. He presented papers to the British Association and was a member of the Chemical Society.
    [br]
    Principal Honours and Distinctions
    FRS 1850.
    Further Reading
    Obituary, Manchester Memoirs, Manchester Literary and Philosophical Society.
    Dictionary of National Biography.
    E.A.Parnell, 1886. The Life and Labours of John Mercer, F.R.S., London (biography). 1867, biography, Journal of the Chemical Society.
    A.E.Musson and E.Robinson, 1969, Science and Technology in the Industrial Revolution, Manchester (includes a brief reference to Mercer's work).
    RLH

    Biographical history of technology > Mercer, John

  • 11 Pretsch, Paul

    [br]
    b. 1808 Vienna, Austria
    d. 1873 Vienna, Austria
    [br]
    Austrian printer and inventor of photogalvanography, one of the earliest commercial photomechanical printing processes.
    [br]
    The son of a goldsmith, Pretsch learned the printing trade in Vienna, where he worked until 1831. He then took up a series of posts in Germany, Belgium and Holland before returning to Vienna, where in 1842 he joined the Imperial State Printing Office. The office was equipped with a photographic studio, and Pretsch was encouraged to explore applications of photography to printing and the graphic arts. In 1851 he was sent to London to take responsibility for the Austrian printing exhibits of the Great Exhibition. This event proved to be a significant international show case for photography and Pretsch saw a great number of recent innovations and made many useful contacts. On returning to Vienna, he began to develop a process for producing printing plates from photographs. Using Talbot's discovery that bichromated gelatine swells in water after exposure to light, he electrotyped the relief image obtained. In 1854 Pretsch resigned from his post in Vienna and travelled back to London, where he patented his process, calling it photogalvanography. He went on to form a business, the Photo-Galvano-Graphic Company, to print and market his pictures.
    The Photographic Manager of the company was the celebrated photographer Roger Fenton, recently returned from his exploits on the battlefields of the Crimea. In 1856 the company issued a large serial work, Photographic Art Treasures, illustrated with Pretsch's pictures, which created considerable interest. The venture did not prove a commercial success, however, and although further plates were made and issued, Fenton found other interests to pursue and Pretsch was left to try to apply some of his ideas to lithography. This too had no successful outcome, and in 1863 Pretsch returned to Vienna. He was reappointed to a post at the Imperial State Printing Office, but his health failed and he made no further progress with his processes.
    [br]
    Bibliography
    9 November 1854, British patent no. 2,373. 11 August 1855, British patent no. 1,824.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York.
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London. H.J.P.Arnold, 1977, William Henry Fox Talbot, London (an account of the relationship with Talbot's process).
    JW

    Biographical history of technology > Pretsch, Paul

  • 12 Lawrence, Richard Smith

    SUBJECT AREA: Weapons and armour
    [br]
    b. 22 November 1817 Chester, Vermont, USA
    d. 10 March 1892 Hartford, Connecticut, USA
    [br]
    American gunsmith and inventor.
    [br]
    Richard S.Lawrence received only an elementary education and as a young man worked on local farms and later in a woodworking shop. His work there included making carpenters' and joiners' tools and he spent some of his spare time in a local gunsmith's shop. After a brief period of service in the Army, he obtained employment in 1838 with N.Kendall \& Co. of Windsor, Vermont, making guns at the Windsor prison. Within six months he was put in charge of the work, continuing in this position until 1842 when the gun-making ceased; he remained at the prison for a time in charge of the carriage shop. In 1843 he opened a gun shop in Windsor in partnership with Kendall, and the next year S.E. Robbins, a businessman, helped them obtain a contract from the Federal Government for 10,000 rifles. A new company, Robbins, Kendall \& Lawrence, was formed and a factory was built at Windsor. Three years later Kendall's share of the business was purchased by his partners and the firm became Robbins \& Lawrence. Lawrence supervised the design and production and, to improve methods of manufacture, developed new machine tools with the aid of F.W. Howe. In 1850 Lawrence introduced the lubrication of bullets, which practice ensured the success of the breech-loading rifle. Also in 1850, the company undertook to manufacture railway cars, but this involved them in a considerable financial loss. The company took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. In 1852 the company contracted to manufacture Sharps rifles and carbines at a new factory to be built at Hartford, Connecticut. Lawrence moved to Hartford in 1853 to superintend the building and equipment of the plant. Shortly afterwards, however, a promised order for a large number of rifles failed to materialize and, following its earlier financial difficulties, Robbins \& Lawrence was forced into bankruptcy. The Hartford plant was acquired by the Sharps Rifle Company in 1856 and Lawrence remained there as Superintendent until 1872. From then he was for many years Superintendent of Streets in the city of Hartford and he also served on the Water Board, the Board of Aldermen and as Chairman of the Fire Board.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York; and 1987, Bradley, Ill. (provides biographical information and includes in an Appendix (pp. 281–94) autobiographical notes written by Richard S.Lawrence in 1890).
    Merritt Roe Smith, 1974, "The American Precision Museum", Technology and Culture 15 (3): 413–37 (for information on Robbins \& Lawrence and products).
    RTS

    Biographical history of technology > Lawrence, Richard Smith

  • 13 McCormick, Cyrus

    [br]
    b. 1809 Walnut Grove, Virginia, USA
    d. 1884 USA
    [br]
    American inventor of the first functionally and commercially successful reaping machine; founder of the McCormick Company, which was to become one of the founding companies of International Harvester.
    [br]
    Cyrus McCormick's father, a farmer, began to experiment unsuccessfully with a harvesting machine between 1809 and 1816. His son took up the challenge and gave his first public demonstration of his machine in 1831. It cut a 4 ft swathe, but, wanting to perfect the machine, he waited until 1834 before patenting it, by which time he felt that his invention was threatened by others of similar design. In the same year he entered an article in the Mechanics Magazine, warning competitors off his design. His main rival was Obed Hussey who contested McCormick's claim to the originality of the idea, having patented his own machine six months before McCormick.
    A competition between the two machines was held in 1843, the judges favouring McCormick's, even after additional trials were conducted after objections of unfairness from Hussey. The rivalry continued over a number of years, being avidly reported in the agricultural press. The publicity did no harm to reaper sales, and McCormick sold twenty-nine machines in 1843 and fifty the following year.
    As the westward settlement movement progressed, so the demand for McCormick's machine grew. In order to be more central to his markets, McCormick established himself in Chicago. In partnership with C.M.Gray he established a factory to produce 500 harvesters for the 1848 season. By means of advertising and offers of credit terms, as well as production-line assembly, McCormick was able to establish himself as sole owner and also control all production, under the one roof. By the end of the decade he dominated reaper production but other developments were to threaten this position; however, foreign markets were appearing at the same time, not least the opportunities of European sales stimulated by the Great Exhibition in 1851. In the trials arranged by the Royal Agricultural Society of England the McCormick machine significantly outperformed that of Hussey's, and as a result McCormick arranged for 500 to be made under licence in England.
    In 1874 McCormick bought a half interest in the patent for a wire binder from Charles Withington, a watchmaker from Janesville, Wisconsin, and by 1885 a total of 50,000 wire binders had been built in Chicago. By 1881 McCormick was producing twine binders using Appleby's twine knotter under a licence agreement, and by 1885 the company was producing only twine binders. The McCormick Company was one of the co-founders of the International Harvester Company in 1901.
    [br]
    Bibliography
    1972, The Century of the Reaper, Johnson Reprint (the original is in the New York State Library).
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (deals in detail with McCormick's developments).
    G.H.Wendell, 1981, 150 Years of International Harvester, Crestlink (though more concerned with the machinery produced by International Harvester, it gives an account of its originating companies).
    T.W.Hutchinson, 1930, Cyrus Hall McCormick, Seedtime 1809–1856; ——1935, Cyrus Hall McCormick, Harvest 1856–1884 (both attempt to unravel the many claims surrounding the reaper story).
    Herbert N.Casson, 1908, The Romance of the Reaper, Doubleday Page (deals with McCormick, Deering and the formation of International Harvester).
    AP

    Biographical history of technology > McCormick, Cyrus

  • 14 Bigelow, Erastus Brigham

    SUBJECT AREA: Textiles
    [br]
    b. 2 April 1814 West Boyleston, Massachusetts, USA
    d. 6 December 1879 USA
    [br]
    American inventor of power looms for making lace and many types of carpets.
    [br]
    Bigelow was born in West Boyleston, Massachusetts, where his father struggled as a farmer, wheelwright, and chairmaker. Before he was 20, Bigelow had many different jobs, among them farm labourer, clerk, violin player and cotton-mill employee. In 1830, he went to Leicester Academy, Massachusetts, but he could not afford to go on to Harvard. He sought work in Boston, New York and elsewhere, making various inventions.
    The most important of his early inventions was the power loom of 1837 for making coach lace. This loom contained all the essential features of his carpet looms, which he developed and patented two years later. He formed the Clinton Company for manufacturing carpets at Leicester, Massachusetts, but the factory became so large that its name was adopted for the town. The next twenty years saw various mechanical discoveries, while his range of looms was extended to cover Brussels, Wilton, tapestry and velvet carpets. Bigelow has been justly described as the originator of every fundamental device in these machines, which were amongst the largest textile machines of their time. The automatic insertion and withdrawal of strong wires with looped ends was the means employed to raise the looped pile of the Brussels carpets, while thinner wires with a knife blade at the end raised and then severed the loops to create the rich Wilton pile. At the Great Exhibition in 1851, it was declared that his looms made better carpets than any from hand looms. He also developed other looms for special materials.
    He became a noted American economist, writing two books about tariff problems, advocating that the United States should not abandon its protectionist policies. In 1860 he was narrowly defeated in a Congress election. The following year he was a member of the committee that established the Massachusetts Institute of Technology.
    [br]
    Further Reading
    National Cyclopedia of American Biography III (the standard account of his life). F.H.Sawyer, 1927, Clinton Item (provides a broad background to his life).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (describes Bigelow's inventions).
    RLH

    Biographical history of technology > Bigelow, Erastus Brigham

  • 15 Brewster, Sir David

    [br]
    b. 11 December 1781 Jedburgh, Roxburghshire, Scotland
    d. 10 February 1868 Allerly, Scotland
    [br]
    Scottish scientist and popularizer of science, inventor of the kaleidoscope and lenticular stereoscope.
    [br]
    Originally destined to follow his father into the Church, Brewster studied divinity at Edinburgh University, where he met many distinguished men of science. He began to take a special interest in optics, and eventually abandoned the clerical profession. In 1813 he presented his first paper to the Royal Society on the properties of light, and within months invented the principle of the kaleidoscope. In 1844 Brewster described a binocular form of Wheatstone's reflecting stereoscope where the mirrors were replaced with lenses or prisms. The idea aroused little interest at the time, but in 1850 a model taken to Paris was brought to the notice of L.J. Duboscq, who immediately began to manufacture Brewster's stereoscope on a large scale; shown at the Great Exhibition of 1851, it attracted the attention of Queen Victoria. Stereoscopic photography rapidly became one of the fashionable preoccupations of the day arid did much to popularize photography. Although originally marketed as a scientific toy and drawing-room pastime, stereoscopy later found scientific application in such fields as microscopy, photogrammetry and radiography. Brewster was a prolific scientific author throughout his life. His income was derived mainly from his writing and he was one of the nineteenth century's most distinguished popularizers of science.
    [br]
    Principal Honours and Distinctions
    Knighted 1832. FRS 1815.
    Further Reading
    Dictionary of National Biography, 1973, Vol. II, Oxford, pp. 1,207–11.
    A.D.Morrison-Low and J.R.R.Christie (eds), 1984, Martyr of Science, Edinburgh (proceedings of a Bicentenary Symposium).
    JW

    Biographical history of technology > Brewster, Sir David

  • 16 Cowper, Edward Alfred

    SUBJECT AREA: Metallurgy
    [br]
    b. 10 December 1819 London, England
    d. 9 May 1893 Weybridge, Surrey, England
    [br]
    English inventor of the hot-blast stove used in ironmaking.
    [br]
    Cowper was apprenticed in 1834 to John Braithwaite of London and in 1846 obtained employment at the engineers Fox \& Henderson in Birmingham. In 1851 he was engaged in the contract drawings for the Crystal Palace housing the Great Exhibition, and in the same year he set up in London as a consulting engineer. Cowper designed the 211 ft (64.3 m) span roof of Birmingham railway station, the first large-span station roof to be constructed. Cowper had an inventive turn of mind. While still an apprentice, he devised the well-known railway fog-signal and, at Fox \& Henderson, he invented an improved method of casting railway chairs. Other inventions included a compound steam-engine with receiver, patented in 1857; a bicycle wheel with steel spokes and rubber tyre (1868); and an electric writing telegraph (1879). Cowper's most important invention by far was the hot-blast stove, the first application of C.W. Siemens's regenerative principle to ironmaking, patented in 1857. Waste gases from the blast furnace were burnt in an iron chamber lined with a honeycomb of firebricks. When they were hot, the gas was directed to a second similar chamber while the incoming air blast for the blast furnace was heated by passing it through the first chamber. The stoves alternatively received and gave up heat and the heated blast, introduced by J.B. Neilson, led to considerable fuel economies in blast-furnace operation; the system is still in use. Cowper played an active part in the engineering institutions of his time, becoming President of the Institution of Mechanical Engineers in 1880–1. He was commissioned by the Science and Art Department to catalogue the collections of machinery and inventions at the South Kensington Museum, whose science collections now form the Science Museum, London.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers 1880–1.
    Further Reading
    Obituary, 1893, Journal of the Iron and Steel Institute: 172–3, London.
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans, pp. 42, 75 (describes his hot-blast stoves).
    LRD

    Biographical history of technology > Cowper, Edward Alfred

  • 17 England, George

    [br]
    b. 1811 or 1812 Newcastle upon Tyne, England
    d. 4 March 1878 Cannes, France
    [br]
    English locomotive builder who built the first locomotives for the narrow-gauge Festiniog Railway.
    [br]
    England trained with John Penn \& Sons, marine engine and boilermakers, and set up his own business at Hatcham Iron Works, South London, in about 1840. This was initially a general engineering business and made traversing screw jacks, which England had patented, but by 1850 it was building locomotives. One of these, Little England, a 2–2– 2T light locomotive owing much to the ideas of W.Bridges Adams, was exhibited at the Great Exhibition of 1851, and England then prospered, supplying many railways at home and abroad with small locomotives. In 1863 he built two exceptionally small 0–4–0 tank locomotives for the Festiniog Railway, which enabled the latter's Manager and Engineer C.E. Spooner to introduce steam traction on this line with its gauge of just under 2 ft (60 cm). England's works had a reputation for good workmanship, suggesting he inspired loyalty among his employees, yet he also displayed increasingly tyrannical behaviour towards them: the culmination was a disastrous strike in 1865 that resulted in the loss of a substantial order from the South Eastern Railway. From 1866 George England became associated with development of locomotives to the patent of Robert Fairlie, but in 1869 he retired due to ill health and leased his works to a partnership of his son (also called George England), Robert Fairlie and J.S.Fraser under the title of the Fairlie Engine \& Steam Carriage Company. However, George England junior died within a few months, locomotive production ceased in 1870 and the works was sold off two years later.
    [br]
    Bibliography
    1839, British patent no. 8,058 (traversing screw jack).
    Further Reading
    Aspects of England's life and work are described in: C.H.Dickson, 1961, "Locomotive builders of the past", Stephenson Locomotive Society Journal, p. 138.
    A.R.Bennett, 1907, "Locomotive building in London", Railway Magazine, p. 382.
    R.Weaver, 1983, "English Ponies", Festiniog Railway Magazine (spring): 18.
    PJGR

    Biographical history of technology > England, George

  • 18 Fox, Sir Charles

    [br]
    b. 11 March 1810 Derby, England
    d. 14 June 1874 Blackheath, London, England
    [br]
    English railway engineer, builder of Crystal Palace, London.
    [br]
    Fox was a pupil of John Ericsson, helped to build the locomotive Novelty, and drove it at the Rainhill Trials in 1829. He became a driver on the Liverpool \& Manchester Railway and then a pupil of Robert Stephenson, who appointed him an assistant engineer for construction of the southern part of the London \& Birmingham Railway, opened in 1837. He was probably responsible for the design of the early bow-string girder bridge which carried the railway over the Regent's Canal. He also invented turnouts with switch blades, i.e. "points". With Robert Stephenson he designed the light iron train sheds at Euston Station, a type of roof that was subsequently much used elsewhere. He then became a partner in Fox, Henderson \& Co., railway contractors and manufacturers of railway equipment and bridges. The firm built the Crystal Palace in London for the Great Exhibition of 1851: Fox did much of the detail design work personally and was subsequently knighted. It also built many station roofs, including that at Paddington. From 1857 Fox was in practice in London as a consulting engineer in partnership with his sons, Charles Douglas Fox and Francis Fox. Sir Charles Fox became an advocate of light and narrow-gauge railways, although he was opposed to break-of-gauge unless it was unavoidable. He was joint Engineer for the Indian Tramway Company, building the first narrow-gauge (3 ft 6 in. or 107 cm) railway in India, opened in 1865, and his firm was Consulting Engineer for the first railways in Queensland, Australia, built to the same gauge at the same period on recommendation of Government Engineer A.C.Fitzgibbon.
    [br]
    Principal Honours and Distinctions
    Knighted 1851.
    Further Reading
    F.Fox, 1904, River, Road, and Rail, John Murray, Ch. 1 (personal reminiscences by his son).
    L.T.C.Rolt, 1970, Victorian Engineering, London: Allen Lane.
    PJGR

    Biographical history of technology > Fox, Sir Charles

  • 19 Gamond, Aimé Thomé de

    SUBJECT AREA: Civil engineering
    [br]
    b. 1807
    d. 1876
    [br]
    French civil engineer and early advocate of the Channel Tunnel.
    [br]
    He became interested in the possibility of a tunnel or a bridge link between England and France in 1833 when he did his own geological survey of a route between Calais and Dover, and in 1834 he proposed an immersed tube tunnel. However, at the Great Exhibition of 1855 he promoted a scheme incorporating an artificial stone isthmus with movable bridges, which was estimated to cost £33,600,000, but this idea was eventuallv abandoned. He reverted to the idea of a tunnel and did further survey in 1855, with 180 lb (80 kg) of flint for ballast, ten inflated pig bladders to bring him to the surface and pieces of buttered lint plastered over his ears to protect them against the water pressure. He touched bottom between 99 and 108 ft (30 and 33 m). In 1856 Napoleon III granted him an audience and promised a scientific commission to evaluate his scheme, which it eventually approved. In 1858 he went to London and got the backing of Robert Stephenson, Isambard K. Brunel and Joseph Locke. He also obtained an interview with Prince Albert. In 1858, after an assassination attempt on Napoleon III, relations between France and England cooled off and Thomé de Gamond's plans were halted. He revived them in 1867, but others were by now also putting forward schemes. He had worked on the scheme for thirty-five years and expended a small fortune. In 1875 The Times reported that he was "living in humble circumstances, his daughter supporting him by giving lessons on the piano". He died the following year.
    [br]
    Further Reading
    T.Whiteside, 1962, The Tunnel under the Channel.
    IMcN

    Biographical history of technology > Gamond, Aimé Thomé de

  • 20 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

См. также в других словарях:

  • (the) Great Exhibition — the Great Exhibition [the Great Exhibition] an exhibition of products from many countries around the world that took place in London in 1851. It was the world’s first international ↑trade fair (= a large event where companies display their… …   Useful english dictionary

  • The Great Exhibition — Queen Victoria opens the Great Exhibition in the Crystal Palace in Hyde Park, London, in 1851 …   Wikipedia

  • Great Exhibition — (1851)    A celebration of British achievements in science and technology. Organized by the Society of Arts, Manufactures and Commerce under the chairmanship of Prince Albert, consort of Queen Victoria, it featured 14,000 exhibitors and attracted …   Encyclopedia of the Age of Imperialism, 1800–1914

  • Great Exhibition — Königin Victoria eröffnet die Weltausstellung im Crystal Palace Die Great Exhibition (deutsch Londoner Industrieausstellung 1851) war eine Industrieausstellung, die vom 1. Mai bis 11. Oktober 1851 im Hyde Park in London stattfand. Die… …   Deutsch Wikipedia

  • Great Exhibition — Exposition universelle de 1851 La reine Victoria du Royaume Uni ouvre l exposition le 1er mai 1851 …   Wikipédia en Français

  • The Atrocity Exhibition — infobox Book | name = The Atrocity Exhibition title orig = translator = image caption = Cover of first edition (hardcover) author = J. G. Ballard illustrator = cover artist = country = United Kingdom language = English series = genre =… …   Wikipedia

  • The Atrocity Exhibition — La Foire aux atrocités La Foire aux atrocités (The Atrocity Exhibition) est un roman expérimental et visionnaire de l écrivain britannique J.G. Ballard. Sommaire 1 Présentation de l œuvre 2 Synopsis 3 Références musicales à cette œuvre …   Wikipédia en Français

  • The Nordic Exhibition of 1888 (1888) — The Nordic exhibition of Industry, Agriculture, and Art of 1888 was a joint venture between 29 organisations and official institutions, with the weight on the private side, represented foremost by the Association of Copenhagen Industrialists. It… …   Wikipedia

  • The Great Train Story — is a 3,500 square foot HO scale model railroad display located in the Transportation Zone of Chicago s Museum of Science and Industry. It explains the story of modern day rail transportation in a 2,206 mile journey from Seattle, Washington… …   Wikipedia

  • The Great Wall Sheraton Hotel Beijing (Beijing) — The Great Wall Sheraton Hotel Beijing country: China, city: Beijing (City) The Great Wall Sheraton Hotel Beijing Location The hotel is conveniently situated in the east side of the city, on a flowing traffic artery at the northeastern corner of… …   International hotels

  • The Great Wall Sheraton Hotel Beijing — (Пекин,Китай) Категория отеля: 5 звездочный отель Адрес: 10 No …   Каталог отелей

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»